

Research Background

- Bridge fires lead to extensive economic damage and safety threat
- Existing fire models do not track sever fire propagation and structural response in real time
- **Increasing DT** application in structural engineering, but least progress in bridge fire engineering

Research Objectives

- **Conduct** a review of available literature on DT concepts, focusing on bridge engineering application
- Identify the research needs and gaps in bridge fire engineering
- Summarize DT potential in bridge fire engineering and form a DT framework for bridge fire management study

Overview: Physical and Digital Twins

Source: https://www.gao.gov/products/gao-23-106453

A Review: Digital Twin Application in Bridge Fire Engineering and Management

Civil Engineering Department, Montana Technological University, MT

Osumanu Musah Mohammed; Yanping Zhu

Basic Components of Bridge DT

- A physical bridge structure, as the reference system
- A virtual DT, an evolving computational model representing the bridge's real-time condition
- Data acquisition systems, integrating **IoT-based sensors to capture** structural, environmental, and operational parameters
- Al-driven analytics, enabling predictive modeling and anomaly detection
- A feedback control mechanism, allowing real-world interventions based on DT-driven insights

Fire Hazards in Bridges

- Fire Behavior of Bridge Materials

Material Type	Thermal	Fire	Major Failure	Mitigation
	Response	Resistance	Mode	Strategies
Steel	Rapid heat		Ruckling loss	Fireproof
	absorption,	50% strength at 600°C)	of load capacity	coatings,
	thermal			heat-resistant
	expansion			alloys
Concrete	Heat		Cracking loss	Fiber
	insulation,	Moderate to	of robor	reinforcement
	potential	high	UT TEDAT	, fire-resistant
	spalling		Integrity	aggregates
FRP Composites				Self-
	Low thermal		Melting,	extinguishing
	resistance,	Low	ignition, toxic	resins,
	combustibility		emissions	thermal
				barriers

Comparison of Traditional vs. DT Based Fire Simulations

Feature	Traditional Fire Models	DT-Based Fire Simulations
ire Exposure Assumption	Prescriptive heat exposure	Real-time sensor-driven fire progression modeling
ctural Response	Simplified material degradation models	Al-enhanced, real-time material deterioration tracking
omputational Efficiency	High computational demand	Hybrid cloud-edge computing for faster simulations
ctive Capabilities	Static assessments	Dynamic, self-learning fire risk evaluation
egration with gency Response	Manual intervention required	Automated risk assessment and response optimization

Challenges in Implementing DT for Fire Applications

Computational complexity and realtime simulation constraints

uting ach	Processing Power	Real-Time Feasibility	Key Limitation
ased Fire ing	High	Limited	Computationally expensive
en jate s	Moderate	High	Required extensive training datasets
computing	Moderate	High	Limited processing for complex models
Computing	High	Moderate	Network dependency

- Lack of standardization and validation in fire simulations
- **Cybersecurity and data privacy** concerns

Data Integration and Sensor Reliability Challenges

Sensor Data		
Variability		

Data Format nconsistenc _ack of Emp Case Studies

Opportunities for Advancing DT in Fire Engineering

- inputs

Montana Technological University

	Description	Proposed Solution
	Differences in sensor	
	precision and	Al-driven auto-calibration
	calibration	
	Variations in fire	Standardized DT data
3	resistance test data	protocols
al Fire	Limited real-world	Creation of a global fire
	bridge fire data	incident database

Al and ML for enhanced prediction

Next-generation IoT sensors and smart infrastructure

Cloud computing and edge computing for real-time processing

Standardized DT frameworks and opensource fire modeling

Evaluating the reliability of digital twin in fire applications

Data fidelity and accuracy of sensor

Model validation and experimental benchmarking

Predictive accuracy in dynamic fire scenarios and real-time synchronization and computational efficiency

